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How to use primes?

How to find primes?

What do we know about primes?

What don’t we know about primes?



Using primes in the real world

The theory of numbers has always been regarded as one of the
most obviously useless branches of pure mathematics. The
accusation [is] never more just than when directed against the
parts [...] concerned with primes. G. H. Hardy (1915)

Very large primes are essential for cryptography, used indirectly
every day by people and banks (really computers, phones, etc.).

1 The RSA cryptosystem
2 Digital signature algorithms
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How to find primes 100 years ago: look in a book

Below is an excerpt from D. N. Lehmer’s 1914 book.

Why don’t we regard 1 as prime anymore?

Unique prime factorization would fail: 12 = 22 · 3 = 15 · 22 · 3
In abstract algebra, prime numbers generalize to prime ideals
while 1 generalizes to units: different concepts.



How to find primes of a special form: Mersenne primes

A Mersenne prime is a prime of the form 2p − 1, where p is prime.
(If 2n − 1 is prime then n must be prime.)

Examples: 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127.
(Note 211 − 1 = 2047 = 23 · 89.)

There is a special-purpose test to check primality of Mersenne
numbers 2p − 1, called the Lucas–Lehmer test.

There are 49 known Mersenne primes, latest being 274,207,281 − 1
(found in Jan. 2016) with over 22,000,000 digits. Largest known
prime has nearly always been a Mersenne prime.



How to find general primes the elementary way: look for factors

Call a factor of n strictly between 1 and n a division witness for n:
it is a “witness” to the compositeness of n. A prime does not have
any division witness, so finding one implies n is composite.

Example. The number 3423701 has two division witnesses, 1801
and 1901.

Searching for division witnesses does not work quickly if factors are
hard to find, and they don’t even exist if the number is prime.

Example. The number 3423713 is prime. Trial division will verify
primality only after testing all numbers up to

√
3423713 ≈ 1850.3.

Finding no division witness up to 1000 essentially tells us nothing.

To check if n > 1 is composite we need to factor it, right? Wrong!
Often it is easier to prove n factors than to find factors, by showing
n lacks a property that all primes have. What is an example of
such a property?



How to find general primes for applications: by probability

Fermat’s little theorem: For prime p and every a from 1 to p − 1,

ap−1 ≡ 1 mod p.

Here it is for p = 5:

14 ≡ 1 mod 5, 24 ≡ 1 mod 5, 34 ≡ 1 mod 5, 44 ≡ 1 mod 5.

This result can be written with general n in place of primes:

1 ≤ a ≤ n − 1
?

=⇒ an−1 ≡ 1 mod n

Writing this doesn’t make it true. Fails at some a⇒ n isn’t prime.

Example. Let n = 2047. Then 22046 ≡ 1 mod 2047: so what? But
32046 ≡ 1013 mod 2047, which proves 2047 is composite without
showing how to factor it. We call 3 a Fermat witness for 2047.

Theorem. If an−1 6≡ 1 mod n for some a in {1, . . . , n − 1} then n
is composite and proportion of Fermat witnesses is often > 50%.

Example. If n = 2047 then about 76% of all a from 1 to 2046 are
Fermat witnesses: a2046 6≡ 1 mod 2047.



How to find general primes for applications: by probability

Example. If n = 11004252611041 then 100 random choices of a
from 1 to n − 1 all satisfy an−1 ≡ 1 mod n. Does that mean n is
prime? NO: n = 12241 · 24481 · 36721.

The Miller–Rabin test is a refinement of the Fermat test. Steps in
the test not described here, but they are all elementary. Introduced
by Miller as a deterministic primality test needing a big hypothesis.

Theorem (Miller, 1976). If Generalized Riemann hypothesis is true
then there is a constant C such that primality of n is same as no
a ≤ C (log n)2 being a Miller–Rabin witness for compositeness of n.

What’s C? If GRH is true then we can use C = 2 (Bach, 1984).

Example. If n = 3423713 then 2(log n)2 ≈ 452.77.

Fact:odd composite n < 1010 have 2, 3, 5, 7, or 11 as MR witnesses.

Theorem (Rabin, 1980). For odd composite n, at least 75% of a
from 1 to n − 1 are Miller–Rabin witnesses for compositeness of n.

Rabin’s theorem avoids GRH but has randomization.



Efficient proof of primality

In practice, Miller–Rabin test used as a probabilistic primality test.
It would be a deterministic primality test running in polynomial
time (bounded by a fixed power of log n) if Generalized Riemann
hypothesis is true.

First unconditional (not depending on any unproved conjectures)
deterministic polynomial time primality test due to Agrawal, Kayal,
and Saxena in 2002.

Other (unconditional) deterministic primality tests run faster than
the AKS test in practice, but there is no proof yet that they do so
on all inputs.



Counting primes

Euclid (Elements, Book IX, Prop. 20) proved there are infinitely
many primes: p1p2 · · · pk + 1 has prime factor not in p1, . . . , pk .

Euler (1737) found another proof using analysis: divergence of

harmonic series
∑
n≥1

1

n
implies divergence of

∑
p

1

p
.

Dirichlet (1837) showed arithmetic progression b, a + b, 2a + b, . . .

when gcd(a, b) = 1 has infinitely many primes:
∑

p=an+b

1

p
=∞.

Ex. {10n + 7} has primes 7, 17,��ZZ27, 37, 47,��ZZ57, 67,��ZZ77,��ZZ87, 97, . . .

Dirichlet’s proof used complex numbers and novel analytic ideas.

Dirichlet created a new branch of mathematics, which uses the
infinite series introduced by Fourier in the theory of heat, to
explore properties of prime numbers. Jacobi (1846)



ALL primes in arithmetic progression

Erdős conjectured for every set S of positive integers satisfying∑
n∈S

1

n
=∞

contains arbitrarily long arithmetic progressions. This is still open
in general. The set of primes fits the hypothesis, by Euler. That
they fit the conclusion as well is the Green–Tao theorem (2004),
whose proof uses ideas from ergodic theory.

Length of longest known arithmetic progression of primes: 26.



Unsolved problems about counting primes

1 Are there infinitely many Mersenne primes 2p − 1?

2 Are there infinitely many twin primes?

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), . . .

Could there be infinitely many “triple primes” p, p + 2, p + 4?
No besides 3, 5, 7: one of n, n + 2, n + 4 is a multiple of 3.

3 (Hardy–Littlewood, 1923) Are there infinitely many prime
k-tuples n + h1, . . . , n + hk “unless there obviously aren’t”?
Don’t want all {n + h1, . . . , n + hk} to contain a multiple of a
common prime. (Bad: {h1, . . . , hk} = {0, 1, . . . , p − 1} mod p
for some prime p ≤ k .)
Ex. (k = 3) n, n + 2, n + 4 bad: at least one is a multiple of 3.
Ex. (k = 3) n, n + 2, n + 6 good: doesn’t always include an
even number, doesn’t always include a multiple of 3. Expect
infinitely many such triples are all prime.



Progress on prime gaps

Theorem. (Zhang, 2013) There are infinitely many prime pairs
differing by at most 70,000,000.

Work of Maynard, Tao, and others reduced prime pair gap bound
infinitely often to at most 246 and got more:
Theorem. For each k ≥ 2 there is a k-tuple (h1, . . . , hk) such that
n + h1, . . . , n + hk are all prime infinitely often.

This is a pure existence result: for no k ≥ 2 is a specific k-tuple
(h1, . . . , hk) known that provably fits the conclusion.



Reciprocals of primes

The number
1

7
= .142857142857 . . . has decimal period 6. Let

E (x) =
|{p ≤ x : 1/p has even decimal period}|

|{p ≤ x}|
.

How do you think E (x) behaves as x grows?

x 10 102 103 104 105 106

E (x) .25 .52 .6488 .6664 .6666 .6666

Theorem. (Hasse, 1965) The “probability” 1/p has even decimal
period is 2/3 : as x →∞, E (x)→ 2/3.



Reciprocals of primes

Decimal period for
1

d
is ≤ d − 1. Equality requires prime d .

Examples:
1

7
= .142857︸ ︷︷ ︸

6

,
1

17
= .0588235294117647︸ ︷︷ ︸

16
Works for d = 7, 17, 19, 23, 29, 47, 59, 61, . . . , 2017, . . .

For b ≥ 2, base-b period of
1

d
is ≤ d − 1. Equality needs prime d .

Examples when b = 2:
1

3
= .01,

1

5
= .0011︸︷︷︸

4

,
1

11
= .00101101︸ ︷︷ ︸

10
Works if b = 2 for d = 3, 5, 11, 13, 19, 29, 37, 53, . . . ,���XXX2017, . . .

Artin (1927) conjectured base-b period for 1/p is p − 1 infinitely
often whenever b is not a perfect square. What is known?

(Hooley, 1967) Follows from Generalized Riemann hypothesis.

(Heath-Brown, 1986) True for at least one of b = 2, 3, or 5.



Adding primes

Strong Goldbach conjecture: all even n > 2 a sum of two primes.
Weak Goldbach conjecture: all odd n > 5 a sum of three primes.
Since n > 5 =⇒ n − 3 > 2, Strong GC implies Weak GC.

1 1923: Hardy and Littlewood showed Generalized Riemann
hypothesis (GRH) implies Weak GC true for odd n� 0.

2 1937: Vinogradov showed Weak GC true for odd n� 0.
3 2013: Helfgott proved Weak GC unconditionally.

Obligatory xkcd:



Counting prime pairs

π(x) = |{p ≤ x : p prime}|
πtwin(x) = |{p ≤ x : p, p + 2 prime}|

πT ,T+6(x) = |{p ≤ x : p, p + 6 prime}|.

Ex. π(10) = |{2, 3, 5, 7}| = 4, πtwin(10) = 2, πT ,T+6(10) = 2.

x 104 105 106 107 108 109

πtwin(x) 205 1224 8169 58980 440312 3424506
πT ,T+6(x) 411 2447 16386 117207 879980 6849047

Expect these counts →∞, but no proof! Observations? Looks like

πT ,T+6(x) ∼ 2πtwin(x) .

Comparing n, n + 2 with n, n + 6 for n ≥ 1, they share the same
statistics for divisibility by 2, but not for divisibility by 3:

n, n + 2 not divisible by 3 exactly when n = 3m + 2.

n, n + 6 not divisible by 3 exactly when n = 3m + 1 or 3m + 2.

These pairs have same statistics for divisibility by each prime 6= 3.



Density of primes around large numbers

Mathematicians have tried in vain [...] to discover some order in
the sequence of primes, and we have reason to believe that it is a
mystery the human mind will never penetrate. Euler (1751)

One of my first projects was [...] the decreasing frequency of
primes, to which end I counted primes in several chiliads. I soon
recognized that behind all of its fluctuations, this frequency is on
average inversely proportional to the logarithm. Gauss (1849)



Density of primes around large numbers

n |{primes in [n, n + 999]}|/1000 1/ log n

10K .106 .1085
50K .089 .0924

100K .081 .0868
500K .079 .0762
1 M .075 .0723

1.5 M .083 .0703
2 M .069 .0689

2.5 M .064 .0678
3 M .062 .0670

This suggests the useful heuristic

Prob(n prime) =
1

log n
.

Strictly speaking, this is problematic:

1
1

log 1
=∞, 1

log 2
> 1, and

∑
n≥2

1

log n
=∞.

2 Being prime is not a probabilistic concept.



The basic probabilistic heuristic

Here is a more elementary heuristic:

Prob(n even) =
1

2
and

∑
n≤x

Prob(n even) ∼ x

2
∼ |{even n ≤ x}|.X

The expected number of primes up to x (“successes”) should be
a sum of probabilities over n up to x :

π(x)
?∼
∑
n≤x

Prob(n prime) =
∑

2≤n≤x

1

log n
!∼ x

log x
,

and that is true: it’s the Prime Number Theorem.

Theorem (Hadamard, de la Vallée-Poussin, 1896) As x →∞,

π(x) ∼ x

log x
.



Data for Prime Number Theorem compared to sum of probabilities

While π(x) ∼ x

log x
∼
∑

2≤n≤x

1

log n
, the last formula is a much

better asymptotic estimate for π(x).

x 104 105 106 107 108

π(x) 1229 9592 78498 664579 5761455
x/ log x 1085 8685 72382 620420 5428681

Ratio 1.1319 1.1043 1.0844 1.0711 1.0612

π(x) 1229 9592 78498 664579 5761455∑
2≤n≤x

1

log n
1245 9629 78627 664918 5762209

Ratio .9863 .9960 .9983 .9994 .9998

For verification within the limits of calculation, [the formula used]
is by no means indifferent and it will be found that it makes a vital
difference in the plausibility of the results. Hardy & Littlewood



Comparing growth of π(x) and approximations

Plot shows π(x),
x

log x
, and smoothed version of

∑
2≤n≤x

1

log n
. Blue

below black for x ≥ 17. No known x > 2 where red below black.

Littlewood (1914) proved red below black infinitely often as
x →∞.

Skewes (1933, 1955) showed red below black before a huge
but explicit bound. Now known to occur before ∼ 10316 and
not before 1019.



Error terms in the Prime Number Theorem

Bounding the error

∣∣∣∣∣∣π(x)−
∑

2≤n≤x

1

log n

∣∣∣∣∣∣ is one way the famous

Riemann hypothesis (1859) can be expressed. It says this error
grows no faster than a constant multiple of

√
x log x as x grows:∣∣∣∣∣∣π(x)−

∑
2≤n≤x

1

log n

∣∣∣∣∣∣ RH≤ C
√
x log x .

The key issue on the right is the exponent on x :
√
x = x1/2. Not

true with smaller exponent, would be a breakthrough to get x1−ε.

This is not how people usually think about RH: there are several
equivalent formulations and more technical ones are more useful.

Work of Littlewood and Skewes each had two parts: first prove
result if Riemann hypothesis is true and then prove the result if
Riemann hypothesis is false. Thus theorem proved either way! (If
RH is false, it is provably false.)



Refining the probabilistic heuristic

When counting primes of a special form, we should take into
account divisibility properties of such numbers. This is like
conditional probability.

Example. Prob(n ∈ {1, . . . , 100} is a multiple of 4) = 1/4, but

Prob(n ∈ {1, . . . , 100} is a multiple of 4 if n is even) = 1/4
1/2 = 1/2.

Example. Pairs n, n + 2 for n ≥ 1 are

(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), . . .

1 A random pair (n,m) has both terms odd 25% of the time,
but n and n + 2 both odd 50% of the time (see above). This
makes it more likely that n, n + 2 both prime than n,m.

2 For prime p > 2, a random pair (n,m) has both terms not a
multiple of p with probability (1− 1/p)2, but n and n+ 2 both
not multiple of p with probability 1− 2/p < (1− 1/p)2. This
makes it less likely that n, n + 2 are both prime than n,m.



Twin prime heuristic

To quantify how often n and n + 2 are both prime, our basic
heuristic is that for each prime p,

Prob(n and m not multiples of p) =

(
1− 1

p

)2

because events “n, m not a multiple of p” are “independent,” while

Prob(n and n + 2 not multiples of p) =

{
1/2 if p = 2,

1− 2/p if p > 2.

New heuristic: Prob(n and n + 2 prime) =
C

(log n)(log(n + 2))
where

C =
1/2

(1− 1/2)2

∏
p>2

1− 2/p

(1− 1/p)2
= 2

∏
p>2

1− 2/p

(1− 1/p)2
≈ 1.320323.



Twin prime conjecture

Conjecture (Hardy–Littlewood, 1923). As x →∞,

πtwin(x)
?∼
∑

2≤n≤x

C

(log n)(log(n + 2))
∼ C

x

(log x)2
,

where

C = 2
∏
p>2

1− 2/p

(1− 1/p)2
≈ 1.320323.

In table below, “Approx.” comes from the summation up to x .

x 104 105 106 107 108

πtwin(x) 205 1224 8169 58980 440312
Approx. 213 1248 8247 58753 440367

Ratio .9599 .9807 .9904 1.0038 .9998

This conjecture for twin prime growth goes back to Hardy and
Littlewood, who did not use probability. They wrote “Probability is
not a notion of mathematics, but of philosophy or physics.”



Twin primes vs. other prime pair

The count up to x of prime pairs p, p + 2 or p, p + 6 should both
grow like a constant multiple of x/(log x)2.

For twin primes the constant is

C =
1/2

(1− 1/2)2

∏
p>2

1− 2/p

(1− 1/p)2
= 2

∏
p>2

1− 2/p

(1− 1/p)2

while for p, p + 6 the constant is

1/2

(1− 1/2)2
2/3

(1− 1/3)2

∏
p>3

1− 2/p

(1− 1/p)2
= 2C .

That’s consistent with earlier guess that πT ,T+6(x) ∼ 2πtwin(x)

coming from numerical data.



Bias in prime counts: Chebyshev’s bias

Every prime other than 2 or 5 ends in digit 1, 3, 7, or 9. Dirichlet’s
theorem in quantitative form says as x →∞ that for d = 1, 3, 7, 9,

|{p ≤ x : p ends in d}|
|{p ≤ x}|

→ 1

4
= 25%.

For d = 1, 3, 7, 9, set πd(x) = |{p ≤ x : p ends in d}|.

x π1(x) π3(x) π7(x) π9(x)

100 5 7 6 5
1,000 40 42 46 38

10,000 306 310 308 303
100,000 2387 2402 2411 2390

1,000,000 19617 19665 19621 19593

Observations? Assuming Generalized Riemann hypothesis and a bit
more, Rubinstein and Sarnak (1994) showed

1 π1(x), π9(x) < π3(x), π7(x) “most of the time”
2 π3(x) vs. π7(x) not biased
3 π1(x) vs. π9(x)? Intermediate data suggest not biased



Bias in prime counts: beyond Chebyshev

Picking two digits among 1, 3, 7, 9, count primes p ≤ x such that
p ends in a digit d and the next prime after p ends in a digit d ′.

Example. Four primes up to 100 end in 3 and next prime ends in
9: 23 (then 29), 53 (then 59), 73 (then 79), and 83 (then 89).

Since π1(x), π9(x) < π3(x), π7(x) “most of the time,” what is an
example of a pair of final digits that should make such a count
bigger than usual? Here are some results over first 108 primes.

d d ′ Count d d ′ Count

3 3 4,442,562 7 7 4,439,355
3 7 7,043,695 7 3 6,755,195

Assuming a quantitative form of the Hardy–Littlewood conjecture,
Lemke Oliver and Soundararajan (2016) showed such counts have
a formula with same dominant term but a second term whose sign
(positive or negative) depends on digits being different or equal.



Final comments

Although the prime numbers are rigidly determined, they somehow
feel like experimental data. Gowers (2002)

It is easier to test primality with a probabilistic algorithm than a
deterministic one.

There are far more unsolved problems than solved problems about
sets of primes being infinite.

Many statistical conjectures about primes can be motivated by
heuristics based on probabilistic ideas such as independence and
conditional probability. Use with caution: Artin’s first quantitative
form of his conjecture on periods of 1/p did not fit the data!

Proofs of theorems about primes use techniques from complex
analysis, Fourier analysis, ergodic theory, algebraic geometry, etc.

The Generalized Riemann hypothesis is far more important in
applications than the Riemann hypothesis alone.
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